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Abstract. An isomorphism between the Gaussian model in the magnetic field and the 
time-dependent conduction-diffusion problem permits us to develop a real space renormali- 
sation group method for the diluted version of this model by which all single cluster results 
of the phenomenological scaling theory of Gefen, Aharony and Alexander are correctly 
reproduced. An extension of this model to the case of strong bias then provides some 
restrictions on the validity of their results. The result for the density of states, which we 
reproduce in the form predicted by Alexander and Orbach, is subject to the same kind of 
restrictions. 

1. Introduction 

A great deal of work recently has been devoted to the study of random walks on 
percolation and fractal structures. An excellent review of these efforts may be found 
in the September 1984 issue of Journal of Statistical Mechanics which is entirely 
devoted to the above problematics. It is believed (Coniglio 1983 and references therein) 
that cluster structure near the percolation threshold can be considered as a random 
fractal. We consider here an extension of the isomorphism between the Gaussian 
model in the constant magnetic field and the random walk problem to the case of 
diluted Gaussian model which corresponds to the symmetric random hopping on the 
above fractal percolative structure. Very simple real space renormalisation group 
( RSRG) analysis has enabled us to rigorously reproduce all the single-cluster scaling 
results of Gefen et a1 (1983) as well as the phenomenological results for the density 
of states proposed by Alexander and Orbach (1982). Our investigation demonstrates 
the rather non-trivial connection between the static and dynamic random walk 
exponents. Phenomenological scaling theories alone are unable to satisfactorily explain 
the source of anomalous behaviour of the random walk in the vicinity of percolation 
threshold. In spite of the apparent success of the above theories in terms of rather 
good numerical agreement with Monte Carlo data (Pandey et a1 1984), their extensions 
to more complicated cases such as the inclusion of electron-electron interactions, 
strong external fields, etc, is rather formidable if not impossible. The formalism 
developed at the same time permits us to consider more complicated situations and is 
fully controllable because it enables the ‘ant in the labyrinth’ problem to be considered 
as the standard problem within the field of critical phenomena. The diversity of methods 
available in the theory of critical phenomena permits us to extend our treatment to 
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the case of asymmetric hopping. In this paper we make the first very modest attempt 
to consider the case of asymmetric hopping within the RSRG scheme. Because very 
little is known from the available Monte Carlo data for this case (Pandey 1984, Stauffer 
1985) more efforts are needed to clarify this situation. We hope that our work will 
stimulate more elaborate numerical and theoretical analysis in this field in the future. 

Section 2 is devoted to the introductory analysis of symmetric and asymmetric 
random walk problems. Here we discuss the validity of Einstein’s relation between 
the conductivity and diffusion and provide the definition of the small parameter in 
the case of applied external field. In 8 3 we consider in some detail the field-theoretic 
formulation of the random asymmetric hopping problem. For the case of the pure 
lattice we reproduce the well known results (Lehr et a1 1984) for the drift velocity and 
diffusion coefficient. We establish under what conditions recent results of Luck ( 1983), 
Fisher (1984) and Aronovitz and Nelson (1984) can be reproduced starting from the 
discrete microscopic model. We also briefly discuss the way of obtaining the weak 
disorder and the effective medium type ( EMA) expansions on the basis of the functional 
integral type of approach. In 0 4 we develop the RSRG scheme for the case of one 
dimension. Here we also establish a proper set of scaling variables and scaling functions 
needed for the multi-dimensional calculations. This then enables us to identify the 
conditions under which the single cluster phenomenological scaling results of Gefen 
er a1 (1983) can be obtained. Section 5 is devoted to simple illustrative two-dimensional 
calculations based on the rather crude Migdal approximation. We consider here only 
the fully directed case according to the terminology introduced by Redner (1982). For 
this case our results are as follows. 

(a) The average root-mean-square displacement ( R ( t ) )  for the case of strong bias 
and the concentration of impurities slightly above the percolation threshold p* behaves 
as ( R ( t ) ) a ( p - p * ) ” l t  with w l =  up(l+8), 8 = ( k - p p ) / u p ,  p is the DC conductivity 
exponent, pp and up are known percolation exponents. 

where (T is related to the strength of the bias and D to the magnitude of the macroscopic 
diffusion coefficient with U, and up being the critical exponents defined in the text, we 
obtained the standard result ( R ( t ) ) a  r”(2+e) predicted by Gefen et al (1983). When 
t 3 r,,,,, the system tends to crossover to the new regime not accessible by the present 
method. 

In 0 6 we reproduce the phenomenological results of Alexander and Orbach (1982) 
for the density of states which is valid for the frequencies greater than c:~,~. Section 
7 is devoted to a brief discussion. 

(b) For p = p *  and times less than t,,,, determined as min(a-vm(2+e), D-”P(’+~) ), 

2. Symmetric and asymmetric random hopping. General results 

The standard problem of random hopping on d-dimensional regular hyperlattice is 
described by equation of motion 

with P. the probability of being at site n at time t and T,, is a hopping matrix which 
is assumed to be known. The first-order differential equation (2.1) is supplemented 
by the initial condition P,(O) = S,, In the absence of trapping, the hopping matrix 
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T,,, is subject to constraint 

C T,,, = 0. 
ll 

This constraint plays an important role in the subsequent analysis. For the case of 
symmetric hopping T,,, = T,,,. When T,,, # T,, we have the case of asymmetric 
hopping. This type of situation is usually realised when, for example, a particle having 
a charge is placed into a strong electric field (Lien and Shklovskii 1981). When the 
hopping matrix is random, the solution P,,( t )  must be properly averaged. The Laplace 
transform of equation (2.1) can be presented in the matrix form as 

(SI-H)P(s)=Zo (2.3) 

where s is Laplace variable conjugate to t, P(s) is the Laplace transform of P(t), I is 
the unit matrix, Io= a,,, The use of constraint (2.2) produces for the matrix H an 
expression: 

The matrix H,,, is subject to the same type of constraint as T,,, in (2.2). In the random 
hopping problem the main quantity of interest is the averaged propagator 

C (  S)  = (( SZ - H)-')O= (K-')O (2.5) 

which gives (P,,( t ) )o as the inverse Laplace transform of Gn0(s). Here ( a  means 
some sort of impurity average. A knowledge of (P.( t ) )o permits us to calculate moments 
according to 

where 2 - l  denotes the inverse Laplace transform and 6 = 1 , 2 , 3 , .  . . . For the case of 
symmetric hopping only even moments are non-zero. In particular, knowledge of 
(R'(t))o permits us to determine the diffusion coefficient D, via 

d 
D,alim - (R'( t ) ) , .  

1-00 d t  (2.7) 

According to the theory of linear response the diffusion coefficient D, is connected 
to the DC conductivity wDC via Einstein's relation 

wDC=(e2n/ T)D,. (2.8) 
Here n is the concentration of carriers, e their charge, T is the temperature in energy 
units. If the applied field is strong enough, the theory of linear response is no longer 
applicable so that Einstein's relation (2.8) cannot be used. To see how this happens 
consider the expression for the current j ,  = ne( where 

and p is some component of the &dimensional vector R( t) :  ( R I (  t ) ,  . . . , R,( t ) ,  . . . , 
Rd(t)) .  Using the equation of motion (2.1), we obtain 

(2.10) 
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If now 

T,, = Wmn exp[ eE - ( m  - n )  e'"'/ TI,  (2.11) 

where E eiw' is the time-dependent uniform electric field directed parallel to the p t h  
coordinate axis of the lattice, we then obtain, instead of (2.10), in the limit of small 
E the following expression 

(2.12) 

where we have taken into account the fact that Wnm is a symmetric matrix. Combining 
(2.12) with the expression for the current j ,  we reobtain Einstein's relation (2.8) with 
diffusion coefficient D( t )  defined as 

(2.13) 

To see that such a defined diffusion coefficient is in agreement with (2.7) we have to 
consider 

(2.14) 

where the equation of motion (2.1) and the symmetry of the matrix Wmn were used. 
It is evident that (2.14) can be reduced to (2.13) if the symmetry of the matrix Wmn is 
taken into account. Hence indeed (2.13) (or (2.14)) is the desired diffusion coefficient. 
The given derivation permits us to determine the small parameter E in the 
conduction-diffusion problem. Say we consider only the nearest-neighbour hopping 
then, evidently, the linear response approximation is valid if and only if 

e = Re( eEZ/ T) << 1 (2.15) 

where 1 is the bond length. The above result is valid only in the single-electron 
approximation. Electron-electron interactions can substantially change the above 
picture (Gefen and Halley 1984). Simple restriction for the given bond (site) to be 
occupied by just one carrier in a given moment of time turns out to be not very 
important as recent Monte Carlo calculations indicate (Przyborowski and Woerkom 
1985). 

3. Field theoretic formulation of the random asymmetric hopping model 

We begin here with a review of some well known results which we shall use in the 
subsequent sections. Use of the identity 

Z ( J )  = n dqi  exp(-$pAicp+qJ) = .rr"'2(det A)- ' /2  exp($A-'J), (3.1) 1 .  
where m is the rank of the matrix A which supposedly must have its inverse, permits 
us to interpret the LHS of (3.1) as the generating function for obtaining all quantities 
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of interest. For the non-random case we can write 

where instead of A we must now use the matrix K defined in (2.6). For the random 
case we have to compute the averaged generating function (In Z(J)), first in order to 
obtain (G,,,(S))~ according to (3.2). Usually the replica trick method is used to obtain 
In Z(J),, i.e., we can write 

a 
a + ~  aa (In Z(J)) ,=lim-((Z(J))"),  (3.3) 

and the limit (Y + 0 is taken only at the very end of the calculations. Alternatively, we 
can use the real space method which is widely applied in the theory of dilute magnetism 
(Stinchcombe 1983). The asymmetric hopping problem turns out to be much more 
complex than the symmetric one as will be demonstrated below. Therefore both the 
replica trick and the real space method must be used depending upon the strength of 
the external field and/or degree of disorder. To understand better the essence of the 
problem we consider first of all the non-random one-dimensional case. 

3.1. One-dimensional asymmetric hopping. Non-random case 

Using formulae (3.1), (2.4) and (2.6) we have now to write down explicitly the 
expression for the quadratic form Q K Q .  We have 

~ K ~ = C s c p f + C c p f  C T i -  C T i j p i c p j .  
I i j ( i # j )  i, i 

( i t ] )  

In the case of nearest-neighbour hopping we have 

Q K Q = C  W:+CQ;?C T i + n , i - C C  T i , i + n p i p i + n  
i i n  i n  

(3.4) 

(3.5) 

where n is the unit d-dimensional vector. For the asymmetric case we have Ti # Ti.  
In the one-dimensional case we are left with the following matrix elements 

where E = eEZ/T (see (2.11) and (2.15)). Substitution of (3.6) into (3.5) produces the 
following result 

Q K Q = C S ~ ? + ~ W C  I I pfcosh ~ - w ~ p , ( e ' ~ , + ~ + e - ' p , - ~ ) .  I (3.7) 

It is convenient to introduce Fourier transforms of the fields p, so that 

p, = constant x C eZw'pT (3.8) 
4 

The actual value of the constant in (3.8) is unimportant because fields can always be 
rescaled to absorb the constant. The use of (3.8) in (3.7) produces without delay 

( ~ ~ p - ~ [ s  +2w(cosh E -cosh(iql+ E ) ) ] .  
9 

(3.9) 
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The expression in square brackets is just a well known expression for the inverse free 
propagator for the case of asymmetric hopping (Lehr et aZ1984). To compute moments 
of the distribution function defined in (2.7) we can use the same methods as we have 
already used for the case of self-avoiding random walk (Kholodenko and Freed 1983), 
see also Lehr et a1 (1984). Using (3.8) we define the Fourier-Laplace transform of P.( t )  as 

then 

(3.10) 

(3.11) 

Using (3.9)-(3.11) we obtain 

(R(t))=(2wlsinh E ) ?  (3.12) 

and from here, according to (2.9), we obtain 

(v)=2wlsinh E.  (3.13) 

The diffusion coefficient in the case of small E can be obtained in the same way as 
has already been outlined in (2.13)-(2.15). In general, when E is not small, we obtain 
instead 

( R 2 ( t ) ) =  (2wZ2 cosh E ) t + ( a ) * t 2 .  (3.14) 

We can define following Lehr et a1 (1984) the diffusion coefficient D ( E )  = w12 cosh E.  

As we see in the case of arbitrary E the use of formula (2.7) no longer produces 
the standard result for D ( E ) .  This result can be recovered only in the first order in 
small E expansion. Consider now once again the expression (3.7), this time in the 
limit E = O .  We now obtain 

(3.15) 

If now in the third sum we make the change i + i + 1,  then we finally obtain the standard 
result 

(3.16) 

Now let E # 0 but E is small. Then using (3.7) we obtain, keeping terms up to first 
order in E ,  the following result 

Q K Q = C  d + w C  ( ( P ~ - ( P , + ~ ) ~ + E w C  ~ ~ ( c p ~ - ~ - - c p ~ + 1 ) .  (3.17) 

Using Fourier transform representation (3 .8)  for cp, and formula (3 .11 )  we recover the 
result of linear response theory, namely ( v ) a  E, D = w12. In the case if w is a random 
variable the situation is not so trivial even when E << 1. Therefore we would now like 
to consider this situation in some detail. 

cpKq = c d+ w c (Cpn- Cp,+J2* 
I I 

I I I 

3.2. Many-dimensional asymmetric hopping. Random case ( E  << 1 ) 

Formula (3.17) can be easily extended to arbitrary dimensions. We want, however, 
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not only to extend it but to make some connections with other works. To do so we 
notice first that, by construction, when w is a random variable, we obtain the situation 
when both the diffusion coefficient and the drift force are random variables. Using 
(2.11) and (3.5) we now obtain 

(3.18) 

When the parameter E defined in (2.16) is less than unity, we can rewrite (3.18) 
(absorbing the unimportant constants) 

where it was taken into account that the matrix wij is symmetric. When the matrix wij 
is random, we have to consider the following averaged replicated functional integral 

(3.20) 

where qi = n;=, cpmi and the vector n is directed now only along the positive semi-axes 
of the &dimensional hypercubic lattice. Clearly, in one dimension the quadratic form 
in the exponent of (3.20) coincides with that of (3.17) as it must. Let now wii+,,= 
wo+ 6wj i+ ,  where wo is non-random and 6w is a random part of the matrix wii Such 
decomposition can be realised, for example, if we expand around the effective medium 
(EMA) results. Let, for instance, 6wii+. be a Gaussian random variable, i.e., we assume 
that 

(3.21) ( aWi,i+m a W j j + m ) o  = A6ij 6nm. 

Then we obtain using (3.20) and (3.21) the following result 

(3.22) 

where the dots in the exponent denote, in general, higher order averages which are 
irrelevant for the renormalisation group treatment. Expression (3.22) should be com- 
pared with the starting expressions of Luck (1983) and Fisher (1984) who subsequently 
analyse it using the renormalisation group (RG) method. This is achieved by going to 
the continuum limit in (3.22) and absorbing all the unimportant constants by an 
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appropriate rescaling of fields. We obtain then 

(3.23) 

here p = 1 - d, summation over repeated indices is assumed, v“, = w,E,, and the actual 
value of the coupling constant go is unimportant. The functional integral (3.23) is 
converted to that postulated by Luck (1983) if the following simplification is made: 

(3.24) 

This simplification is justifiable if instead of a monocrystal with impurities we consider 
an amorphous solid. Then in addition to the impurity average we also have to perform 
an angular average (Landau and Lifshitz 1954). This then would eliminate the exponen- 
tial term linear in E and leave only the term quadratic in E decoupled according to 
(3.24). Such a model then coincides with that proposed by Fisher (1984) and is in 
disagreement with that proposed by Luck (1983). Note that his complex n-component 
scalar field can always be converted to the 2n-component real field and because the 
limit n + 0 must be taken anyway these two are identical models. Fisher’s model by 
no means exhausts the class of models appropriate for the E << 1 regime. For instance, 
if impurities are correlated we may have instead of relation (3.21) the following more 
general relation 

( s W i , i + n s W j , j + m ) o  = f ( l i - j l ) s n m  (3.25) 

where f ( l x 1 )  is some known function. Alternatively, we can have instead of (3.25) the 
following correlator 

(3.26) 

Such a type of model is close to that recently proposed by Aronovitz and Nelson 
(1984). The RG treatment of the last model shows some new features not available 
from the anaysis of the Fisher-Luck model. This indicates that critical behaviour is 
disorder-specific in general. More complicated situations are conceivable as well. 
Given analysis shows under what conditions the theory of linear response briefly 
described in P 2 is applicable. We see that for the amorphous solids, even when E << 1, 
the theory of linear response breaks down because the term linear in E drops out due 
to angular averaging. For the case of monocrystals with impurities the term in the 
exponent of (3.22) which is proportional to E 2  should be considered as a small 
perturbation, by construction, so that the theory of linear response is applicable. 

We have mentioned that the decomposition of the matrix wij onto fluctuating and 
non-fluctuating parts can be associated with the expansion around the EMA result. 
Now we would like to consider this situation in more detail. 
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3.3. Weak disorder and E M A  expansions 

Recently several authors have considered the weak disorder expansions for the asym- 
metric hopping problem. In one dimension results are much more impressive than in 
higher dimensionalities. In particular, Bernasconi and Schneider (1983) gave an exact 
asymptotic result for R( t )  for the case of percolative-like distribution for the hopping 
rates. More specifically, they considered a disordered chain for which with probability 
p the hopping rates are 

Tn+,,n = Tn,n+* = 0 

and with probability 1 - p  the hopping rates are 

where A, U, U are some non-negative numerical constants. Khantha and Balakrishnan 
(1984) also considered hopping conductivity in a one-dimensional bond-percolation 
model in a constant external field. They failed to produce an exact result as they 
encountered serious mathematical difficulties. They provide only an asymptotic result 
for the case of low and high frequencies. Another more general type of probability 
distribution was considered by Derrida and Orbach (1983) who also provide low 
and high frequency expansions and expansions in terms of weak disorder. Similar 
results were obtained then by Biller (1984) and Lehr et a1 (1984). Many-dimensional 
generalisations of results of Demda and Orbach were made by Derrida and Luck 
(1983) which is much less complete in terms of quality and quantity of obtained results 
compared with the one-dimensional case. Finally Stephen (1981) was the first who 
considered the case of asymmetric hopping within the EMA approximation using the 
functional integral method. Very simple derivation of the EMA approximation with 
help of the functional integral method but without the replica trick was given in the 
paper by Kholodenko and Freed (1984). It is instructive, for completeness, to discuss 
here both weak disorder and EMA approximations in order to see their connection 
with results of § 3.2. We can write for the matrix elements w ~ + , , ~ =  Ti++ 
+ ( w ~ + ~ , ~  - T i + J  = Ti+, , i+ATi+, , i  and similarly w ~ , ~ + , ,  = Ti,i+,, + ( w ~ , ~ + , ,  - Tsi+, , )  = 
T4i+m+ATi,i+,, where Tij is a non-random matrix. The difference between the EMA 

and weak disorder expansion lies in the fact that in the first case the matrix Tij is 
found self-consistently (Kholodenko and Freed 1984) whereas in the second case 
the matrix Tij is assumed to be known (Lehr et a1 1984). For the weak disorder case 
we have to substitute the above matrix elements into (3.18) and then in the functional 
integral (3.1) and (3.3). Instead of considering the partition function (3.3) it is 
instructive to consider from the beginning the averaged propagator (the non-averaged 
propagator was defined in (3.2)). Then expanding the exponents containing A Tj  matrix 
elements into power series, performing a trivial Gaussian integration with the use of 
Wick's theorem (Itzykson and Zuber 1980) and subsequent impurity averaging produces 
the desired weak disorder expansion. Alternatively, we could perform the impurity 
average first and then accomplish the functional integration order by order in powers 
of averaged ATj using known free Gaussian propagators. The last option then would 
lead directly to results discussed in § 3.2. The EMA expansion, in principle, can be 
treated in exactly the same way with the two available options described above. Because 
the renormalisation group analysis is not too sensitive with respect to the actual 
numerical values of the bare coupling constants, for the purposes of this analysis it is 
sufficient to keep only terms quartic in fields 'p i  as was demonstrated in § 3.2. When 
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the non-critical regime is considered this is no longer true and the detailed analysis is 
necessary. Because we are interested here only in the development of the renormalisa- 
tion group method, we omit all technical details associated with actual computations 
outside the critical regime. Before we finish this subsection, we have to notice as well 
some differences between the results of 0 3.3 compared with that of 0 3.2. In 0 3.3 we 
do not require the parameter E to be small. Instead, we require only that the disorder 
must be weak. Because of that there is a potential possibility of variety of critical 
regimes which was already discovered at the EMA level by Stephen (1981). We shall 
not go into these details here. We will be interested in this work in the case of arbitrary 
percolative-like disorder and strong electric field. We have to note, though, that in 
high enough fields the approximation of nearest-neighbour jump rates in the master 
equation (2.1) may no longer be valid. The approach which we shall use below does 
not take such effects into account. 

4. Real space renormalisation of the random asymmetric hopping model ( E  > 1). 
One-dimensional case 

Recently Lien and Shklovskii (1981) provided a qualitative picture of random hopping 
conduction in a strong electric field. They correctly concluded that for DC conduction 
the above hopping problem is effectively reduced to the problem of directed percolation 
(Obukhov 1980). More accurately, we may say that the random resistors network 
problem and ordinary percolation (for E<< 1) are related to each other in the same 
way as the random diode problem is related to the directed percolation (for E >> 1) 
(Redner 1982, Harms and Straley 1982). In practice, the situation is not so simple, 
and we have to distinguish between the case of the perfect lattice with impurities and 
that of the amorphous lattice when, in addition to the impurity average, the angular 
averaging must be performed. In the last case the above analogy is evidently lost 
and the situation is much more complex. When the time-dependent problems are 
considered the above analogy with directed percolation is of little use in the very same 
way as for the case of ordinary percolation and time-dependent diff usion-conduction. 

Recently a couple of works have appeared in which an attempt had been made to 
describe the time-dependent asymmetric random hopping. Some of these attempts 
have already been listed in P 3. Here we provide the additional references. Monte 
Carlo simulations of biased random walk performed by Pandey (1984) indicate rather 
complicated interplay between the strength of the biased field, the extent of the disorder 
and the classical diffusion against drift behaviour. Pandey concludes that for the mean 
displacement (R( t)) the appropriate formula is 

R ( t ) - t k  (4.1) 

where k is some time-dependent exponent which is in general unknown. A somewhat 
different conclusion was arrived at by Dhar (1984). He postulates the same dependence 
for (R(  t)) as in (4.1) but with k defined as k = (&, In eE)-' where we used our notation 
(see definition of E in (2.15)) and &, being the percolation correlation length. The 
above biased hopping takes place on the bond (site) percolative lattice near the 
percolation threshold. Theoretical calculations of White and Barma (1984) were made 
for the case of a Bethe lattice. They are in qualitative agreement with Dhar's hypothesis. 
Unlike the case of unbiased diffusion, where a large body of results have been 
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accumulated, the case of biased diffusion does not enjoy such completeness. The 
most recent Monte Carlo results of Stauffer (1985) are in qualitative agreement with 
Dhar’s conjecture. Here we would like to develop a RSRG method in order to find out 
under what conditions result (4.1) can be obtained. 

4.1. Real space renormalisation for the case of the one-dimensional non-random symmetric 
and asymmetric hopping 

In $, 3 we have already obtained all the results needed for the renormalisation group 
analysis. For convenience, we reproduce them here once again in a more systematic 
way. Using (3.1) and (3.7) we now obtain 

W 
Z ( j )  = n dvi  exp -E [s+ w cosh ~]cp:--x ~ i ( e E q i + l + e - E q i - l + ~  pji) .  (4.2) 

S i  ( i 2 i  I 

To describe the effective macroscopic conductivity (diffusion) there is actually no need 
to calculate the averaged propagator (GYA)o, defined in (3.2), than to compute ( R (  t ) ) ,  
(d/dt)(R(t)),, etc. For the case E =0, due to the Gaussian nature of the ‘kinetic’ term 
in (3.16) the effective diffusion coefficient will naturally emerge as some multiplier in 
front of the ‘kinetic’ term :(vi - (see (3.16)) during the course of real space 
renormalisation. When E # 0, the situation is not so simple which was already demon- 
strated in (3.14). If, however, following Derrida and Luck (1983), we define the 
diffusion tensor D for d-dimensional hyperlattice as 

then using this definition in one dimension and combining it with (3.14) produces 

D = wZ2 cosh E. (4.4) 

Using result (4.4) together with (2.10), (3.12), (3.14) and assuming that E >> 1 we can 
rearrange (4.2) as follows ( j  = 0): 

(4.5) 

The continuum version of (4.5) reproduces evidently results for D and (U) given by 
(3 .13 )  and (4.4) for the case of large E .  From here we see that indeed the coefficient 
in front of the ‘kinetic’ term in (4.5) can be associated with D and the coefficient in 
front of the ‘gradient’ term is just the average velocity. Such identification removes 
the necessity to consider the partition function Z for the case of arbitrary current J. 

After these preliminaries we need to rewrite (4.5) in the following form: 
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where 

AW,E,S(t i +  1 )  =exp[-fw e“(cp, -cp,+A2-tw e‘cpl+l(cpl-cpl+l)l e x p ( - t w f - b d + l ) .  

Even though at this time D and v coefficients are looking the same, it is necessary to 
keep track of each of them separately in view of future generalisations. Therefore it 
is convenient to rewrite (4.7) as follows: 

(4.7) 

AD,u,s(i, i +  1 )  exp[-&D(cp, - ( ~ ~ + ~ ) ~ - h + ~ ( c p ~  -cpl+JI  exp[-iwf-tscpf+J (4.7u) 

with obvious definitions of D and U. 
Consider now the following integral 

I = dV2 AD,u,s(l, 2)AD,u,s(2, 3). J 
Straightforward calculation of (4.8) then produces 

(4.8) 

x exp[ - fs’(Z)cp: -is’( r)cp:], (4.9) 

where 

D’ = :[(2D - v)2/(2D+2s - U)] + t u  (4.10) 

v’ = U, (4.11) 

s‘( 1 )  = ~ ‘ ( r )  = S’ = s + D -;U - f [ (2D - v ) * / ( 2 D + 2 ~  - U)]. (4.12) 

In order to analyse recurrences (4.10)-(4.12) it is useful first to formally put b = 0. 
This is perfectly permissible because, in view of (4.14), U plays just a role of parameter. 
When v = 0 we obtain 

D’ = D2/2( D + s), 
s‘ = s + sD/(s + D) .  

(4.13) 

(4.14) 

Recurrences (4.16) and (4.17) have the following sets of fixed points 

s* = 0, D* = 0, ( 4 . 1 5 ~ )  

s*  = 0, D* = 00. (4.15 b )  

When v is non-zero the first set ( 4 . 1 5 ~ )  can no longer be considered, hence we do not 
consider it below at all. If we are interested in the long time limit of the hopping 
process t+oo ( s + O ) ,  we need to check first whether the value s = s * = O  leads to 
physically acceptable results for recurrences (4.10)-(4.12). Fors* = 0 we obtain D *  = t u  
which is clearly different from the values given by ( 4 . 1 5 ~ )  and (4.15b). Hence we see 
that strong bias may change the physical picture in one dimension provided that 
operator D is relavant at this fixed point. To find this, we would like to outline first 
the basic scaling relations for the case of non-random hopping. First we assume that 
(R’) ,  given by (2.6), can be written as 

(RS) = I”(D, U, t )  (4.16) 
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where the generally unknown function f is assumed to be dimensionless. This can be 
achieved by introduction of some microscopic time scale T~ such that in fact f( 0, U, t )  = 
f(TOD, T ~ U ,  T i l t ) .  We choose T~ = 1 subsequently unless otherwise specified. 
Alternatively, (4.16) can be rewritten, for example, as 

(P)= l”(Dt, u t )  ( 4 . 1 6 ~ )  

etc, so that introduction of T~ becomes unnecessary. For the statistical mechanics 
treatment the first option is preferable. The introduction of T~ comes from the fact 
that the equation of motion (2.1) is homogeneous. In the field-theoretic renormalisation 
(Itzykson and Zuber 1980) arbitrary T~ corresponds to the arbitrary length scale 
parameter for the renormalised quantities. Following De Gennes (1979) we write 

P6 f ( D ‘ ,  U ’ ,  t ’ )  = 16f(D, U, t )  (4.17) 

to be contrasted with Ohtsuki and Keyes (1984a, b). Notice the correct choice of 
relations like (4.17) is highly non-trivial and, in general, affects the final results. When 
U = 0 the exponent 6 can only have values 2,4,  . . . . In this case consider, for example, 
6 = 2. We have 

(4.18) 

where we formally introduced the exponents vD and v, via relations D’/ D = b”“D, 
t ’ / t  = b-’/”s with b being a decimation parameter (in our case b = 2). Using definition 
(2.7) we also obtain 

o(t) = 1 2 b 2 - 1 / g T 0 1 j ( D b ’ / u ~ ,  tb- ’ /” . )  (4.19) 

where we reintroduced T~ for clarity. If D in (4.13) can be interpreted as a microscopic 
conductivity, then the recurrence (4.13) is nothing but the Ohm’s law for two sequen- 
tially joined conductors for s = 0. This observation permits us to develop the scaling 
theory of conductivity in the linear response regime given by (2.12) and (2.13). 
According to Lubensky (1979) we can write for the averaged conductivity (U) before 
and after decimation the following relation 

( u ) / D =  ( ( a ’ ) / D ’ ) b d - 2 .  (4.20) 

Taking into account (4.13) and (4.14) this can be equivalently presented as 

( g ) / D  = bd-’f(D’b-’/”D, S’b-’”’s). (4.21) 

When U = 0, the situation is more complicated. Consider, for example, the case 6 = 1 
in (4.17), 

( R )  = l’f( D’, U’, 2‘) 

= /bf(Db’/YD, ub‘l’u, tb-’l”s) (4.22) 

where we have introduced the new exponent U, via relation U’/ U = b’/”L. When U + 0 
we should expect (R)+O. Therefore (4.22) in this limit should be reduced to 

( R )  = l b l + l / ” ~ u ~ ( D b ’ / Y D ,  tb-’”s)+O(u2). (4.23) 
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It can be shown (Nelson and Fisher 1975) that the formal relations like D’/ D = b ” ” ~  
are valid only in the vicinity of the fixed points, if they exist, of the corresponding 
recurrences. Therefore, we actually have to write instead of D’/ D = bl/“D the follow- 
ing equation (D’-D*) / (D-D*)= 6D’/6DzdD’/dDID.,s.=AD= b’/’D where 
D*, s* , . . . are the corresponding fixed points for D, s, etc. The same must also be 
true for all other operators. Taking into account these comments, the exponents v,,, v, 
are defined in the usual way as 

vo = In b/ln A,, (4.24) 

where the subscript 0 stands for D, s, etc. Using the recurrence (4.10) we obtain without 
delay AD = 4 and, hence, the operator D is irrelevant at D* =;U. The only relevant 
fixed point for D is given by (4.15b). For this point it is convenient to introduce the 
inverse quantity p = D-’ so that -vD = vp Using (4.10) and (4.13) we obtain vp = 1. 
The situation with A, is somewhat delicate. Going back to the original expressions 
(4.5) and (4.7) we notice that initially in (4.5) we had just one site term associated 
with the s variable. By going from (4.5) to (4.7) we created two site terms associated 
with s for each bond. This procedure is somewhat artificial and was introduced here 
by analogy with similar situations, e.g. one-dimensional Ising model in the magnetic 
field (Stanley 1971). In order to compute the critical exponent we have to take into 
account both s’(1) and s ’ ( r )  recurrences. This is especially true for the disordered 
case when s’(1) and s ’ ( r )  are not necessarily the same (see equations (4.35), (4.39)). 
Using the above arguments, we have to write instead of (4.24) 

z = vi’ = [ ln(A~”+A~’)] / ln  b (4.25) 

where Ai’*r) = ds’(1, r)/dslS*,D*. Using s recurrences (4.12) and (4.14) together with 
(4.25) we obtain z = 2 .  Going back to the expression (4.18) for ( R 2 )  and requiring 
t b - ” ” S  = 1 we obtain 

( R 2 )  = 1 2 t 2 ” ~ g ( S p t u ~ / u ~ ) .  (4.26) 

As ( R 2 ) s  t we expect that the scaling function behaves like g(x )  - X ” D  for large x. 
This gives the following value for oD 

(4.27) 

Using previously obtained values of vs and vp we find wD = 0 and ( R 2 ) E  t, as anticipated. 
Requiring tb”/”s = 1 in (4.19) and repeating the same arguments produces the standard 
result D = constant. The situation with the conductivity will be considered later, when 
the disorder is introduced. When the bias is present, use of (4.22) produces 

( R )  = l t ‘ ~ g ( 6 p t ” ~ ’ ” ~ ,  6 u ” ~ ’ ” ~ ) .  (4.28) 

In one dimension the situation is simple because of the relation (4.11). This gives 
v;’=O so that the scaling function g(x )  in (4.28) should behave like g ( x ) - x ” ~  for 
large x, to reproduce the result ( R ) E  t. The given analysis completes the treatment of 
the one-dimensional non-random case. 

O D  = v p  ( 1/  vs - 2). 

4.2. Real space renormalisation group for the case of one-dimensional random symmetric 
and asymmetric hopping 

In the previous subsection we have demonstrated how the RG method can produce 
results which are in qualitative agreement with exact calculations. The simplicity of 
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the RG method permits us to extend it to the case of bond disorder described by the 
percolative like jump probability which for the one-dimensional case can be written as 

(4.29) 

Using this probability distribution we can write for the ‘free energy’ per bond the 
following expression 

W(wi,i+l) = pS(wi,i+l- w 0 ) + ( 1  - p)a(wi,i+l)* 

(4.30) 

where N B = ; x N  with x being a coordination number of the lattice which in one- 
dimensional case is just 2. The replicated version of this model for the case of zero 
bias was previously considered by Stephen and Kariotis (1982). In (4.30) we omitted 
unimportant for the present indices E and s in the partition sum defined in (4.6) and 
(4.7) with jump probabilities w now being random variables. We shall call the model 
defined by (4.6), (4.7), (4.28) and (4.30) as diluted modified Gaussian model (DMGM) 

to be contrasted with the diluted Gaussian model (DGM) for U = 0. To develop the 
RG method for DMGM we have to consider instead of integral (4.8) the following 
generalisation 

= dV2 AD,,”Jl, 2)AD2,”2,*(2, 3) (4.31) 

where now pairs (D,, U,) and ( D2, U*) can generally be different. It is instructive first 
to consider the case U, = u2 = 0, s = 0. The straightforward calculation then produces 

(4.32) 

and we can again immediately recognise Ohm’s law if instead of D we would have 
conductivities U, and U,, i.e. uT= u,u2/(u,+u2) is just the total conductivity of two 
sequentially joined conductors. If u1 = u2 = 0 but s f 0 we obtain DGM where (ueD) 

U1 U, 

2[ s + ;( U, + U,)] ’ U12 = (4.33) 

(4.34) 

(4.35) 

Here we already observe the differences between the left and the right recurrences as 
it was explained before equation (4.25). Notice that prescription (4.25) restores the 
symmetry with respect to the permutation U, u2. In the most general case we obtain 

(4.36) 

(4.37) 
1 (2D2-u2)2 Df=ft)2+- 
4 ( D , + D 2 + 2 ~ - ~ 1 ) ’  
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U’ = U,, (4.38) 

1[(2D,-u2)2+(2D,-u,)z] 
4 [D ,+D,+2s -u , ]  ’ 

1 ( 2 0 , -  
2 ( D , + D , + 2 s - v 1 ) ‘  

~ ’ ( l )  = s + D , - ; U ~ - -  

s’( r )  = s + D2 - t u 2  -- 

( 4 . 3 9 ~ ~ )  

(4.39b) 

Given recurrences reduce to those previously obtained, see (4.10)-(4.12), when D1 = 
D, = 0, U, = u2 = U. Unlike the symmetric case, equation (4.33), these recurrences are 
explicitly asymmetric with respect to permutation D, D,. We have noticed already 
in the previous subsection another difference between the symmetric and asymmetric 
hopping which lies in the fact that even in the pure non-random case the sets of fixed 
points are different, in general, for symmetric and asymmetric hopping. After one 
decimation the probability distribution (4.29) must be adjusted accordingly (Stinch- 
combe 1983). Unlike the symmetric case, where the new probability distribution can 
be presented in the form 

with known recurrence function f( w, p ) ,  now we need to slightly modify the rules in 
order to obtain the desired result. To do so, introduce instead of (4.30) the following 
probability distributions (index i is omitted in the following) 

(4.41) 

(4.42) 

where Do, uo are some initial values of D and U respectively. Then, after one decima- 
tion, we obtain 

From the symmetric hopping case (Stinchcombe 1983) we know that 

p ’  = p 2  (4.45) 

and functions f D  and f, can be obtained from the following relations 

(4.46) 
4(D+2s)  2 

p’u’ = pu. (4.47) 

Relations (4.46) and (4.47) must be augmented by the appropriate relation for the s 
recurrence. Following ideas of Jayaprakash et a1 (1978), in order to obtain the 
corresponding relation for s we have to demand that when D and U are both zero the 
renormalisation should leave the variable s at the undecimated sites unchanged. This 
then produces, in view of (4.25), the following result 

+ ( 1  -p)2s .  
2 ~ ( D + ~ s - u )  (4.48) 
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Formulae (4.45)-(4.48) accomplish the task of obtaining the recurrences for the one- 
dimensional random asymmetric hopping and permit us to develop the renormalisation 
group analysis. As in the non-random case, we begin with analysis of scaling functions. 
Introducing the new scaling exponent vp in the usual way, according to (4.24), we can 
write now the following scaling relations 

(R’ )  = 12b2f(Spb1/”p, tb-””S, Spbl’”p), v = 0, (4.49) 

D( t )  = 1 2 7 0 1 b 2 - 1 / v ~ ~ ( 8 p b 1 / u p ,  tb-’/”s, Spbl’”p), v = o ,  (4.50) 

( R )  = lbf(Gpb’/“p, Sub””., tb-””S, Spb””p), (4.51) 

v = o .  (4.52) 

Now consider the last relation. Let 6s’ = 0, so that we have the case of random resistors 
network. Demanding that Sp‘b-’/’p=’ we obtain 

_- ( a ) -  b d - 2 f ( ~ p ‘ b - 1 ~ u p ,  Ss‘b-‘/”s, Sp’b-’/”p), 
D 

(a)/ D = ( S p ’ )  u p ( d - 2 ) ( p (  Sp’(  sp) -C)  (4.53) 

where the crossover exponent 5 is defined as 5 =  v p / v p .  To obtain the result of 
Stinchcobmbe (1979a) we have to require now ~ ( x )  - x-l for large x. This then will 
produce the following result for the DC conductivity exponent p 

p vP( d - 2) + 5. (4.54) 

( a ) / D = ( S p ) ~ ~ ( S s ( S p ) - ” p ’ ” ~ ) .  (4.55) 

For 6s’ Z 0, using result (4.53) we can write 

In the limit Sp + 0 for the conductivity to stay finite we must require f(y) - y” which 
gives x = ( p /  vp) vs and 

(V) /DK S ( & / Y P ) ” . I .  (4.55a) 

Considering now the diffusion coefficient in the limit t + m, we have to distinguish 

D ( t )  = 12701b2-1i”sf(Spb1’YP, 6pbl’”p) (4.56) 

between the cases Sp # 0 and Sp = 0. When Sp f 0 we must have 

which, with use of constraint Spbl’“p = 1, gives ( U  = 0) 

D ( t )  = p7;1(Sp)-”p(2- l ’~s)  $ ( S p  ( S p  ) - yP’ ” p )  . (4.57) 

This result shoud be in agreement with Einstein’s relation (2.8) which is possible only 
if @(x)  - xol for large x. This then produces 

lim D( t )  a ( Sp)p’-pP 
1’cc 

S p S O  

(4.58) 

with known percolation exponent p p  and the exponent a is found to be 

(Y = - 8vP + v,( 1/ V, - 2) (4.59) 

where 8 = ( p  - P p ) /  vp. 

technique as before 
For Sp = 0 using scaling property of the function $ we obtain, using the same 

D( t )  a t + s .  (4.60) 
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Because of the relation 

we obtain as well 

(4.61) 

( R 2 ) a  t-use+l. (4.62) 

This relation should be in accord with equation (4.26) which is formally valid for the 
case Sp = 0. We are forced now, because of equation (4.61), to redefine the value of 
the exponent wD given by (4.27) which becomes 

3, = U,, ( 1/ vs - 2 - e). (4.63) 

From here we see that, if the identification 1/ v, = 2 + 6 is made, the well known single 
cluster results of Gefen et a1 (1983) are reproduced. Notice also that the relation 
1/ v, = 2+ 8becomesexactattheJixedpointforp accordingto (4.26), (4.61) and (4.62). For 
Sp < 0 we anticipate that (R’), given by (4.49), is time-independent. This gives 

(R2)a (6p) -2up  (4.64) 
when the relation U;’ = 2 + 8 is used. Finally, consider the implications of scaling for 
( R )  defined in (4.53). We have again to distinguish between the cases S p # O  and 
Sp = 0. For Sp > 0 we should require ( R ) a  t according to (3.12) and (3.14). Using (4.51) 
and putting there Sub’/”U = 1 we obtain 

( R )  = l (  Su) - ” cp (Sp (SU) - up, t (  SU) ’Sp (SU) - ’”) 

= I (  Su) - t (( Su) ’cp1 (Sp ( S u )  - up, Sp ( 6 0 )  -++ (4.65) 

Following the standard prescriptions (Domb and Lebowitz 1984), assuming the analy- 
ticity of cpl, we can expand function cpl in power series in x = S p - ’ ( S u ) ’ ~ / ’ ~  provided 
that Sp is kept fixed. Then the leading term of this expansion will have the following 
form 

( R )  - &~u)-w- ’k )  ( up ( Su ) - ” ) t (4.66) 

with the exponent w1 obtained from the requirement that (R) should stay finite when 
Su+O.  This gives the following result w1 = vp( U;’- 1).  As will be demonstrated 
below on the two-dimensional example, the presence of bias does not affect the value 
of the exponent vs. Using an approximation U;’ = 2+ e we obtain o1 = vp( 1 + e). This 
result, apparently, is valid only for the case of very strong bias. Consider finally the 
situation when Sp = 0. Now we cannot demand ( R ) a  t. Going back to (4.51) we have 

( R )  = lt’~f(Spt”J”P, SUt’J”+ (4.67) 

For small t using an approximation v;’=2+ 8 we obtain the standard result (R)a:  
t ’ / (2+e)  (Gefen et a1 1983) but for the larger times the system tends to the new regime 
not accessible within the present renormalisation group treatment. The crossover time 
is defined according to 

t,,, = min((6u)-’Jvs, ( ~ p ) - ” J ” s ) .  (4.68) 

To determine the exponent v, as well as to demonstrate that the rest of the exponents 
remain the same, we provide the reader with very simple illustrative two-dimensional 
calculations. 



RSRG method for the dilute Gaussian model 3245 

5. Real space renormalisation of the random asymmetric hopping model ( E  >> 1). 
Two-dimensional case 

In the preceeding sections we have already developed many components needed for 
the extension of the renormalisation group method to higher dimensions. Yet some of 
the questions still need to be discussed. For example, following Redner (1982), it 
is conceivable to assume that results of asymmetric hopping will depend upon the 
orientation of the external electric field with respect to axes of the hypercubic lattice. 
As was already mentioned in 0 3, for the case of E << 1, the renormalisation analysis 
will produce, in general, different results depending on presence or absence of angular 
averaging in addition to the impurity averaging. Here we shall restrict ourselves only 
to the case of impurity averaging so that we have to distinguish, according to Redner 
(1982), between the fully directed and the partially directed percolation. In fact, the 
above terminology is somewhat misleading for the following reason. For a given system 
the impurity averaging must be performed with or without the presence of the electric 
field, i.e., as far as the averaging process is concerned, we have still just, say, the 
standard bond percolation problem. This then implies that unlike the true case of 
directed percolation (Obukhov 1980), where we have to distinguish between the two 
percolation lengths tpll and tPl in the case of asymmetric hopping we still have just 
one correlation length tP because the distribution of bonds is independent of external 
electric field. What makes the problem anisotropic is anisotropic hopping rates. This 
then creates anisotropy dynamically and not statically. Despite all that the concept 
of fully directed against partially directed percolation turns out to be very useful and 
we would like now to make it more precise. In the case of fully directed percolation 
the electric field is oriented parallel to the diagonal (1,1,. . . , 1) of the d-dimensional 
hypercube whereas in the case of partially directed percolation the electric field is 
oriented along a particular axis ofthe lattice so that perpendicular to this axis the system is 
isotropic. Here, for simplicity, we would like to consider only the two-dimensional case 
which already has all the features needed for further development. 

5.1. Real space renormalisation of the random asymmetric hopping model. Fully directed 
case 

For the two-dimensional case we would now like to develop some sort of Migdal- 
Kadanoff renormalisation scheme. Although it does not provide very accurate results 
it gives, nevertheless, the correct orders of magnitude needed for illustrative purposes. 
A very simple realisation of the above scheme for the static symmetric case was 
originally proposed by Stinchcombe (1979a, b). His method differs from the tradi- 
tionally accepted (Burkhardt 1982) where we have to shift bonds j r s t  and then to 
perform a decimation. According to Stinchcombe we need j r s t  to decimate horizontal 
(vertical) bonds and then shift them. Because the Laplace variable s plays in the 
random hopping problem the same role as the constant external magnetic field, 
analogously to the magnetic case we encounter here the same kind of unpleasant 
problems upon the bond shifting (Jayaprakash et a1 1978). To begin, we have to notice 
first that in the two-dimensional case the transfer matrix (4.7a) should be rewritten as 
follows 

This comes from the fact that for the square lattice the coordination number is 4 (to 
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be compared with 2 for the linear chain). Evidently, in any dimension for the lattice 
with coordination number x we should have instead of (5.1) 

A,,,E,s(i, i + l )  =exp[-@(cp, - c p l + 1 ) 2 - ~ ~ c p , + , ( c p ,  -cp,+,)lexp[-(s/x)cpf-(s/x)cpf+,l. 
( 5 . 1 ~ )  

For the linear chain we used prescription (4.25) for computing the exponent z. It is 
clear that in the case of the pure chain result (4.25) can be obtained in two ways. First, 
we can combine the left and right recurrences for the bond in question or, second, we 
can combine the right recurrence for the given bond with the left recurrence for the 
subsequent bond. These two operations will produce identical results bringing the 
numerical prefactor in front of s back to one in agreement with (4.5). For the random 
case we shall adopt the same rule (4.25). In higher than one dimension we have to 
modify the rule (4.25) in a straightforward way because of the different coordination 
number of the lattice. The principle upon which the recurrence for s can be built is 
clear. Consider, for example, some point i on the square lattice which remains after 
the first decimation. Then we shall, in general, obtain four recurrences coming from 
four bonds attached to this point. We have to sum all four of them to restore the 
numerical prefactor in front of s back to unity. Generalisation to other lattices is 
straightforward. When the Migdal-Kadanoff method is used the situation is not so 
simple (Jayaprakash er a1 1978). We adopt here a method which closely follows the 
method originally proposed by Stinchcombe (1979b). Here we generalise Stinch- 
combe’s method to the case of time dependence in the same way as he had already 
done for the static symmetric hopping problem. Migdal’s procedure for the fully 
directed case on a two-dimensional square lattice is depicted in figure 1. Following 
Stinchcombe (1983), it is also instructive to consider an auxiliary problem, depicted 
in figure 2, in order to have a better understanding as to how to treat the ‘magnetic 
field’ (in our case s variable). In the preceding section we have obtained all necessary 
formulae to accomplish the above task. Following Stinchcombe (1979b) we j irst  
decimate bonds combined in sequence and then join them in parallel. 

The model example presented in figure 2 produces the following recurrence for 
the probability p 

p’=2p2- P4 (5.2) 
which can be trivially obtained if we restrict ourselves with binary type of probability 

(01 I bl 

Figure 1. Migdal’s decimation procedure for the case of square lattice. Basic block ( a )  
goes into ( b )  upon decimation first and bond shifting second as suggested by Stinchcombe 
(1979b). 



RSRG method for  the dilute Gaussian model 3247 

Figure 2. Simplest example of the renormalisation transformation which can be performed 
exactly. Here D,-D, are in general random conductivities. The variable s associated with 
each bond before renormalisation is not shown explicitly but shoud be taken into account 
in order to obtain the recurrence for s: s + s'. 

distributions similar to (4.41) and (4.42). Indeed, we have in this case the following 
obvious relation (1 - p2)2 = 1 - p' which immediately produces (5.2). Using these results 
we obtain the following recurrence for D 

Similarly, we obtain the following recurrence for U 

pu' = p42U + 2p2( 1 -p2)u. 

Finally, for the s recurrence we obtain 

SI U 1 ( ~ D - u ) ~  -=2p4 s + ~ - - - -  
2 ( 2 2 ( 2 0 + 2 s - u )  

+2p2(1-p2) 2s+D-- - -  ( 2 2 ( 2 D + 2 s - u )  

(5.3) 

(5.4) 

(5.5) 

When D and U are zero we obtain s ' = 4 s  in accordance with the requirement of 
Jayaprakash et a1 (1978), which was mentioned in $ 4 ,  that the renormalisation should 
leave the variable s at the undecimated sites unaltered. When v = O  we obtain the 
recursion relations for the symmetric case. 

To understand better the meaning of the last recurrence we provide the reader with 
figure 3. Finally, figure 2, when it is understood in the topological sense, is converted 
into figure l ( b )  for the case of Migdal's transformation. The recurrences obtained 

(01 ( b )  

Figure 3. Basic building block ( a )  is converted into periodic array of such blocks ( b ) .  
Each of four bonds outgoing from the point 0 in ( b )  participates in the decimation (point 
0 is left untouched) which produces s recurrences. Then, what is left is combined in 
parallel so that we come back to the one-dimensional case when the rule (4.25) canbe applied. 
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permit us to obtain the critical exponents. Because the recurrence (5.2) for the 
probability p is the same as that for the symmetric case we can write immediately 
p *  = 0.618, A, = 1.528 and up = 1.635. Now for the v recurrence we obtain 

U ’  = 2VP* (5.6) 

and, hence, A, = 1.236,~~ =3.27. We shall consider for the s recurrence (5.5) the only 
one physically sensible fixed point s* = 0 (i.e. t + 00). Then for the D recurrence we 
obtain 

D*=p*(D*+’  2v * ). (5.7) 

Analysis of this recurrence depends crucially on the choice of the fixed point for v. 
As it follows from (5.6), there are two fixed points for U :  U* = 0 and v* =CO. According 
to the philosophy of the renormalisation group analysis (Nelson and Fisher 1975) we 
have to choose fixed point U* = 0 as physically relevant because it is unstable. Then 
we have for the recurrence (5.7) the same situation as for the isotropic case. 

For the ‘resistance’ p, p = 1/D, we obtain vP = 1.44. Using the above results we 
obtain for the s recurrence the following result 

(5.8) 

which surprisingly coincides with that which could be obtained for the symmetric case. 
This then produces immediately v, = 0.4054 or z = 2.467. This accomplishes the task 
of computation of all relevant exponents in two dimensions. 

1 ,  4s = S(  1 + P * ~ )  = 1.3819s 

6. Computation of the density of states 

It is known that the density of states is related to the computation of the trace of the 
averaged propagator (Gn,Jo (Feynman 1972). Using the fact that 

and the formula ( x ~ i y ) - ’ =  P(l/x)*id(x) for y+O we obtain for the density of 
states the following known result 

where N is the number of lattice sites and s lies on the real axis. Using a &dimensional 
generalisation of the expression (4.30) for the ‘free energy’ per site we obtain 

7 7 3  
Y + O  N d s  

p ( s )  = lim+ - Im --(In ~ ( j  = 0, s))ols=s-iy, 

During the procedure of real space renormalisation the number of lattice sites is 
reduced. Hence, N must be replaced by N‘ appropriate to the particular iteration step 
during the course of renormalisation (Rammal 1984). Using these results we can write 
for the free energy per site the following formal expression 

(6.4) S = f ( D ,  U, s, p )  = N-’(ln Z ( j  = 0, 0, U, s ) ) ~ .  
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Using the results of Nelson and Fisher (1975) we can now write 

f(D’, U‘, s’, p ’ )  = b d f ( Q  U, s, P). (6.5) 

In the scaling regime we obtain from here the following result 

9= b - d f ( S p b ” ” p ,  sb’ /”s ,  Svb””U, 6pb””p). 

Consider now the case 6 p  = 0, i.e. the situation at the percolation threshold. In the 
absence of bias in the scaling regime of Gefen et a1 (1983) we obtain 

9 a  S d ” s  (6.7) 

while when the bias is present this result should be replaced by 

90: s d ” y (  6us-”J”. ) .  (6.7a) 

If we make an identification v, = (2+ e)-’  then for  us-"^/"^ s 1 the phenomenological 
result of Alexander and Orbach (1982) holds. Indeed using the definition (6.3) 
combined with (6.7) (or ( 6 . 7 ~ )  for  us-''^'"^^ 1) we obtain 

(6.8) 

which coincides with the result predicted by Alexander and Orbach (1982) if the usual 
dimension d is replaced by the fractal dimension 2. 

p ( s )  s d / ( 2 + e l - l  

7. Discussion 

In the previous sections we have developed a rather crude renormalisation group 
method for studying the biased random walk on random lattice for the fully directed 
case using the terminology of Redner (1982). Evidently, more sophisticated treatments 
are possible as well and will be given in the future. The purpose of our work was to 
demonstrate that the simple phenomenological fractal picture of the ‘ant in the 
labyrinth’ problem developed by Alexander and Orbach (1982) and Gefen et a1 (1983) 
breaks down as long as some complications are introduced into the above picture. 
The presence of bias is only one of such complications considered here. As far as we 
can see, none of them could be overcome by just simple scaling arguments so that 
renormalisation group as well as other analytical methods should be used to explain 
more sophisticated situations. We hope that our approach will stimulate more elaborate 
calculations which will enable the diff usion-conduction problem to lie in the same 
‘universality class’ as other critical phenomena problems. 
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